1 # == Schema Information
3 # Table name: current_relations
5 # id :bigint(8) not null, primary key
6 # changeset_id :bigint(8) not null
7 # timestamp :datetime not null
8 # visible :boolean not null
9 # version :bigint(8) not null
13 # current_relations_timestamp_idx (timestamp)
17 # current_relations_changeset_id_fkey (changeset_id => changesets.id)
20 class Relation < ApplicationRecord
23 include ConsistencyValidations
25 include ObjectMetadata
27 self.table_name = "current_relations"
31 has_many :old_relations, -> { order(:version) }
33 has_many :relation_members, -> { order(:sequence_id) }
34 has_many :relation_tags
36 has_many :containing_relation_members, :class_name => "RelationMember", :as => :member
37 has_many :containing_relations, :class_name => "Relation", :through => :containing_relation_members, :source => :relation
39 validates :id, :uniqueness => true, :presence => { :on => :update },
40 :numericality => { :on => :update, :only_integer => true }
41 validates :version, :presence => true,
42 :numericality => { :only_integer => true }
43 validates :changeset_id, :presence => true,
44 :numericality => { :only_integer => true }
45 validates :timestamp, :presence => true
46 validates :changeset, :associated => true
47 validates :visible, :inclusion => [true, false]
49 scope :visible, -> { where(:visible => true) }
50 scope :invisible, -> { where(:visible => false) }
51 scope :nodes, ->(*ids) { joins(:relation_members).where(:current_relation_members => { :member_type => "Node", :member_id => ids.flatten }) }
52 scope :ways, ->(*ids) { joins(:relation_members).where(:current_relation_members => { :member_type => "Way", :member_id => ids.flatten }) }
53 scope :relations, ->(*ids) { joins(:relation_members).where(:current_relation_members => { :member_type => "Relation", :member_id => ids.flatten }) }
55 TYPES = %w[node way relation].freeze
57 def self.from_xml(xml, create = false)
58 p = XML::Parser.string(xml, :options => XML::Parser::Options::NOERROR)
61 doc.find("//osm/relation").each do |pt|
62 return Relation.from_xml_node(pt, create)
64 raise OSM::APIBadXMLError.new("node", xml, "XML doesn't contain an osm/relation element.")
65 rescue LibXML::XML::Error, ArgumentError => e
66 raise OSM::APIBadXMLError.new("relation", xml, e.message)
69 def self.from_xml_node(pt, create = false)
70 relation = Relation.new
72 raise OSM::APIBadXMLError.new("relation", pt, "Version is required when updating") unless create || !pt["version"].nil?
74 relation.version = pt["version"]
75 raise OSM::APIBadXMLError.new("relation", pt, "Changeset id is missing") if pt["changeset"].nil?
77 relation.changeset_id = pt["changeset"]
80 raise OSM::APIBadXMLError.new("relation", pt, "ID is required when updating") if pt["id"].nil?
82 relation.id = pt["id"].to_i
83 # .to_i will return 0 if there is no number that can be parsed.
84 # We want to make sure that there is no id with zero anyway
85 raise OSM::APIBadUserInput, "ID of relation cannot be zero when updating." if relation.id.zero?
88 # We don't care about the timestamp nor the visibility as these are either
89 # set explicitly or implicit in the action. The visibility is set to true,
90 # and manually set to false before the actual delete.
91 relation.visible = true
96 # Add in any tags from the XML
97 pt.find("tag").each do |tag|
98 raise OSM::APIBadXMLError.new("relation", pt, "tag is missing key") if tag["k"].nil?
99 raise OSM::APIBadXMLError.new("relation", pt, "tag is missing value") if tag["v"].nil?
101 relation.add_tag_keyval(tag["k"], tag["v"])
104 # need to initialise the relation members array explicitly, as if this
105 # isn't done for a new relation then @members attribute will be nil,
106 # and the members will be loaded from the database instead of being
107 # empty, as intended.
108 relation.members = []
110 pt.find("member").each do |member|
112 raise OSM::APIBadXMLError.new("relation", pt, "The #{member['type']} is not allowed only, #{TYPES.inspect} allowed") unless TYPES.include? member["type"]
114 # member_ref = member['ref']
116 member["role"] ||= "" # Allow the upload to not include this, in which case we default to an empty string.
117 relation.add_member(member["type"].classify, member["ref"], member["role"])
119 raise OSM::APIBadUserInput, "Some bad xml in relation" if relation.nil?
124 # FIXME: is this really needed?
126 @members ||= relation_members.map do |member|
127 [member.member_type, member.member_id, member.member_role]
132 @tags ||= Hash[relation_tags.collect { |t| [t.k, t.v] }]
139 def add_member(type, id, role)
141 @members << [type, id.to_i, role]
144 def add_tag_keyval(k, v)
147 # duplicate tags are now forbidden, so we can't allow values
148 # in the hash to be overwritten.
149 raise OSM::APIDuplicateTagsError.new("relation", id, k) if @tags.include? k
155 # updates the changeset bounding box to contain the bounding box of
156 # the element with given +type+ and +id+. this only works with nodes
157 # and ways at the moment, as they're the only elements to respond to
159 def update_changeset_element(type, id)
160 element = Kernel.const_get(type.capitalize).find(id)
161 changeset.update_bbox! element.bbox
164 def delete_with_history!(new_relation, user)
165 raise OSM::APIAlreadyDeletedError.new("relation", new_relation.id) unless visible
167 # need to start the transaction here, so that the database can
168 # provide repeatable reads for the used-by checks. this means it
169 # shouldn't be possible to get race conditions.
170 Relation.transaction do
172 check_consistency(self, new_relation, user)
173 # This will check to see if this relation is used by another relation
174 rel = RelationMember.joins(:relation).find_by("visible = ? AND member_type = 'Relation' and member_id = ? ", true, id)
175 raise OSM::APIPreconditionFailedError, "The relation #{new_relation.id} is used in relation #{rel.relation.id}." unless rel.nil?
177 self.changeset_id = new_relation.changeset_id
185 def update_from(new_relation, user)
186 Relation.transaction do
188 check_consistency(self, new_relation, user)
189 raise OSM::APIPreconditionFailedError, "Cannot update relation #{id}: data or member data is invalid." unless new_relation.preconditions_ok?(members)
191 self.changeset_id = new_relation.changeset_id
192 self.changeset = new_relation.changeset
193 self.tags = new_relation.tags
194 self.members = new_relation.members
200 def create_with_history(user)
201 check_create_consistency(self, user)
202 raise OSM::APIPreconditionFailedError, "Cannot create relation: data or member data is invalid." unless preconditions_ok?
209 def preconditions_ok?(good_members = [])
210 # These are hastables that store an id in the index of all
211 # the nodes/way/relations that have already been added.
212 # If the member is valid and visible then we add it to the
213 # relevant hash table, with the value true as a cache.
214 # Thus if you have nodes with the ids of 50 and 1 already in the
215 # relation, then the hash table nodes would contain:
216 # => {50=>true, 1=>true}
217 elements = { :node => {}, :way => {}, :relation => {} }
219 # pre-set all existing members to good
220 good_members.each { |m| elements[m[0].downcase.to_sym][m[1]] = true }
223 # find the hash for the element type or die
224 hash = elements[m[0].downcase.to_sym]
225 return false unless hash
227 # unless its in the cache already
228 next if hash.key? m[1]
230 # use reflection to look up the appropriate class
231 model = Kernel.const_get(m[0].capitalize)
232 # get the element with that ID. and, if found, lock the element to
233 # ensure it can't be deleted until after the current transaction
235 element = model.lock("for share").find_by(:id => m[1])
237 # and check that it is OK to use.
238 raise OSM::APIPreconditionFailedError, "Relation with id #{id} cannot be saved due to #{m[0]} with id #{m[1]}" unless element&.visible? && element&.preconditions_ok?
247 # if any members are referenced by placeholder IDs (i.e: negative) then
248 # this calling this method will fix them using the map from placeholders
250 def fix_placeholders!(id_map, placeholder_id = nil)
251 members.map! do |type, id, role|
254 new_id = id_map[type.downcase.to_sym][old_id]
255 raise OSM::APIBadUserInput, "Placeholder #{type} not found for reference #{old_id} in relation #{self.id.nil? ? placeholder_id : self.id}." if new_id.nil?
266 def save_with_history!
272 Relation.transaction do
273 # have to be a little bit clever here - to detect if any tags
274 # changed then we have to monitor their before and after state.
277 # clone the object before saving it so that the original is
278 # still marked as dirty if we retry the transaction
281 tags = self.tags.clone
282 relation_tags.each do |old_tag|
284 # if we can match the tags we currently have to the list
285 # of old tags, then we never set the tags_changed flag. but
286 # if any are different then set the flag and do the DB
289 tags_changed |= (old_tag.v != tags[key])
291 # remove from the map, so that we can expect an empty map
292 # at the end if there are no new tags
296 # this means a tag was deleted
300 # if there are left-over tags then they are new and will have to
302 tags_changed |= !tags.empty?
303 RelationTag.where(:relation_id => id).delete_all
304 self.tags.each do |k, v|
305 tag = RelationTag.new
312 # same pattern as before, but this time we're collecting the
313 # changed members in an array, as the bounding box updates for
314 # elements are per-element, not blanked on/off like for tags.
316 members = self.members.clone
317 relation_members.each do |old_member|
318 key = [old_member.member_type, old_member.member_id, old_member.member_role]
319 i = members.index key
321 changed_members << key
326 # any remaining members must be new additions
327 changed_members += members
329 # update the members. first delete all the old members, as the new
330 # members may be in a different order and i don't feel like implementing
331 # a longest common subsequence algorithm to optimise this.
332 members = self.members
333 RelationMember.where(:relation_id => id).delete_all
334 members.each_with_index do |m, i|
335 mem = RelationMember.new
338 mem.member_type = m[0]
340 mem.member_role = m[2]
344 old_relation = OldRelation.from_relation(self)
345 old_relation.timestamp = t
346 old_relation.save_with_dependencies!
348 # update the bbox of the changeset and save it too.
349 # discussion on the mailing list gave the following definition for
350 # the bounding box update procedure of a relation:
352 # adding or removing nodes or ways from a relation causes them to be
353 # added to the changeset bounding box. adding a relation member or
354 # changing tag values causes all node and way members to be added to the
355 # bounding box. this is similar to how the map call does things and is
356 # reasonable on the assumption that adding or removing members doesn't
357 # materially change the rest of the relation.
359 changed_members.collect { |type, _id, _role| type == "Relation" }
360 .inject(false) { |acc, elem| acc || elem }
362 # if the relation is being deleted tags_changed will be true and members empty
363 # so we need to use changed_members to create a correct bounding box
364 update_members = if visible && (tags_changed || any_relations)
365 # add all non-relation bounding boxes to the changeset
366 # FIXME: check for tag changes along with element deletions and
367 # make sure that the deleted element's bounding box is hit.
372 update_members.each do |type, id, _role|
373 update_changeset_element(type, id) if type != "Relation"
376 # tell the changeset we updated one element only
377 changeset.add_changes! 1
379 # save the (maybe updated) changeset bounding box